NUMBER-FORMS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jacobi Forms over Number Fields

OF THE DISSERTATION Jacobi Forms over Number Fields by Howard Skogman Doctor of Philosophy in Mathematics University of California San Diego, 1999 Professor Harold Stark, Chair We de ne Jacobi Forms over an algebraic number eld K and construct examples by rst embedding the group and the space into the symplectic group and the symplectic upper half space respectively. We then create symplectic m...

متن کامل

Number Forms in the Brain

Abstract Mental images of number lines, Galton's "number forms" (NF), are a useful way of investigating the relation between number and space. Here we report the first neuroimaging study of number-form synesthesia, investigating 10 synesthetes with NFs going from left to right compared with matched controls. Neuroimaging with functional magnetic resonance imaging revealed no difference in brain...

متن کامل

Ternary quadratic forms over number fields with small class number

We enumerate all positive definite ternary quadratic forms over number fields with class number at most 2. This is done by constructing all definite quaternion orders of type number at most 2 over number fields. Finally, we list all definite quaternion orders of ideal class number 1 or 2.

متن کامل

The number of representations of a number by various forms

In a recent paper, I began with four classical results due to Jacobi, Dirichlet and Lorenz which give the number of representations of a number by various forms involving squares in terms of divisor functions. I deduced another sixteen similar representation theorems involving triangular numbers and/or squares, including celebrated results of Legendre and Ramanujan (and omitted a seventeenth, g...

متن کامل

Cm Number Fields and Modular Forms

x∂F⊂a⊂OF (Na)k−1. Here the superscript ‘+′ stands for totally positive elements. Siegel further derived from this a simpler proof of his famous theorem that ζF (1− k) is rational for all k ≥ 1. Siegel’s construction is based on the simple observation that a Hilbert modular form becomes an elliptic modular form when restricting diagonally to the upper half plane. Indeed, Hecke constructed and pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science

سال: 1893

ISSN: 0036-8075,1095-9203

DOI: 10.1126/science.ns-22.556.181-c